OMP/OMR系列擺線液壓馬達OMP-200/250/315/400馬達
OMP/OMR-50
OMP/OMR-63
OMP/OMR-80
OMP/OMR-100
OMP/OMR-125
OMP/OMR-160
OMP/OMR-200
OMP/OMR-250
OMP/OMR-315
OMP/OMR-400
其他型號歡迎進店咨詢
SNP2NN/014RN01BAP1F5F4NNNN
SNP3NN
SNM2NN
SNM3NN
四柱液壓機
四柱液壓機
成形件比沖壓件減輕20%?40%,對于空心階梯軸類零件,可以減輕40%?50%的重量。
2.減少零件和模具數量?降低模具費用。液壓成形件通常只需要1套模具,而沖壓件大多需要多套模具。液壓成形的發動機托架零件由6個減少到1個,散熱器支架零件由17個減少到10個。
3. 可減少后續機械加工和組裝的焊接量。以散熱器支架為例,散熱面積增加43%,焊點由174個減少到20個?工序由13道減少到6道,生產率提高66%。
4. 提高強度與剛度,尤其是疲勞強度,如液壓成形的散熱器支架,其剛度在垂直方向可提高39%,水平方向可提高50%。
5. 降低生產成本。根據對已應用液壓成形零件的統計分析,液壓成形件的生產成本比沖壓件平均降低15%?20%,模具費用降低20%~30%。
結構型式
按作用力的方向區分,液壓機有立式和臥式兩種。多數液壓機為立式,擠壓用液,結
四柱液壓機
四柱液壓機(7張)
構壓機則多用臥式。按結構型式分,液壓機有雙柱、四柱、八柱、焊接框架和多層鋼帶纏繞框架等型式,中、小型立式液壓機還有用C型架式的。C型架式液壓機三面敞開,操作方便,但剛性差。沖壓用的焊接框架式液壓機剛性好,前后敞開但左右封閉。在上傳動的立式四柱自由鍛造液壓機中,油缸固定在上梁中,柱塞與活動橫梁剛性連接,活動橫梁由立柱導向,在工作液的壓強作用下上下移動。橫梁上有可以前后移動的工作臺。在活動橫梁下和工作臺面上分別安裝上砧和下砧。工作力由上、下橫梁和立柱組成的框架承受。 采用泵-蓄能器驅動的大、中型的自由鍛水壓機常采用三個工作缸,以得到三級工作力。工作缸外還設有向上施加力的平衡缸和回程缸。
工作原理
四柱液壓機的液壓傳動系統由動力機構、控制機構、執行機構、輔助機構和工作介質組成。 動力機構通常采用油泵作為動力機構,一般為積式油泵。為了滿足執行機構運動速度的要求, 選用一個油泵或多個油泵。低壓(油壓小于2.5MP)用齒輪泵;中壓(油壓小于6.3MP)用葉片泵;高壓(油壓小于32.0MP)用柱塞泵。各種可塑性材料的壓力加工和成形,如不銹鋼板鋼板的擠壓、彎曲、拉伸及金屬零件的冷壓成形,同時亦可用于粉末制品、砂輪、膠木、樹脂熱固性制品的壓制。
SNP2NN/4.0RN01AAC1B5
SNP2NN/6.0RN01AAC1B5
SNP2NN/8.0RN01AAC1B5
SNP2NN/011RN01AAC1B5
SNP2NN/014RN01AAC1B5
SNP2NN/017RN01AAC1B5
SNP2NN/019RN01AAC1B5
SNP2NN/022RN01AAC1B5
SNP2NN/025RN01AAC1B5
SNP2NN/011RN01BAP1F5F4
SNP2NN/014LN01BAP1C7C3
SNP2NN/4.0RN01BAP1C3C3
SNP2NN/017RN06GAP1E6E5
SNP2NN/6.0RN06GAP1E6E5
SNP2NN/4.0RN06GAP1E6E5
SNP2NN/6.0RN01BAP1F4F4
SNP2NN/011RN01BAP1F5F
是為液壓傳動提供加壓液體的一種液壓元件,是泵的一種。它的功能是把動力機(如電動機和內燃機等)的機械能轉換成液體的壓力能。凸輪由電動機帶動旋轉。當凸輪推動柱塞向上運動時,柱塞和缸體形成的密封體積減小,油液從密封體積中擠出,經單向閥排到需要的地方去。當凸輪旋轉至曲線的下降部位時,彈簧迫使柱塞向下,形成一定真空度,油 箱中的油液在大氣壓力的作用下進入密封容積。凸 輪使柱塞不斷地升降,密封容積周期性地減小和增 大,泵就不斷吸油和排油。
液壓泵:是液壓系統的動力元件,是靠發動機或電動機驅動,從液壓油箱中吸入油液,形成壓力油排出,送到執行元件的一種元件。液壓泵按結構分為齒輪泵、柱塞泵、葉片泵和螺桿泵。
液壓齒輪油泵的結構以及工作原理
齒輪泵的工作原理和結構
它是分離三片式結構,三片是指泵蓋和泵體,泵體內裝有一對齒數相同、寬度和泵體接近而又互相嚙合的齒輪,這對齒輪與兩端蓋和泵體形成一密封腔,并由齒輪的齒頂和嚙合線把密封腔劃分為兩部分,即吸油腔和壓油腔。兩齒輪分別用鍵固定在由滾針軸承支承的主動軸和從動軸上,主動軸由電動機帶動旋轉。
當泵的主動齒輪按圖示箭頭方向旋轉時,齒輪泵右側(吸油腔)齒輪脫開嚙合,齒輪的輪齒退出齒間,使密封容積增大,形成局部真空,油箱中的油液在外界大氣壓的作用下,經吸油管路、吸油腔進入齒間。隨著齒輪的旋轉,吸入齒間的油液被帶到另一側,進入壓油腔。這時輪齒進入嚙合,使密封容積逐漸減小,齒輪間部分的油液被擠出,形成了齒輪泵的壓油過程。齒輪嚙合時齒向接觸線把吸油腔和壓油腔分開,起配油作用。當齒輪泵的主動齒輪由電動機帶動不斷旋轉時,輪齒脫開嚙合的一側,由于密封容積變大則不斷從油箱中吸油,輪齒進入嚙合的一側,由于密封容積減小則不斷地排油,這就是齒輪泵的工作原理。泵的前后蓋和泵體由兩個定位銷17定位,用6只螺釘固緊。為了保證齒輪能靈活地轉動,同時又要保證泄露小,在齒輪端面和泵蓋之間應有適當間隙(軸向間隙),對小流量泵軸向間隙為0.025~0.04mm,大流量泵為0.04~0.06mm。齒頂和泵體內表面間的間隙(徑向間隙),由于密封帶長,同時齒頂線速度形成的剪切流動又和油液泄露方向相反,故對泄露的影響較小,這里要考慮的問題是:當齒輪受到不平衡的徑向力后,應避免齒頂和泵體內壁相碰,所以徑向間隙就可稍大,一般取0.13~0.16mm。
為了防止壓力油從泵體和泵蓋間泄露到泵外,并減小壓緊螺釘的拉力,在泵體兩側的端面上開有油封卸荷槽,使滲入泵體和泵蓋間的壓力油引入吸油腔。在泵蓋和從動軸上的小孔,其作用將泄露到軸承端部的壓力油也引到泵的吸油腔去,防止油液外溢,同時也潤滑了滾針軸承。
齒輪泵存在的問題
1、 齒輪泵的困油問題
齒輪泵要能連續地供油,就要求齒輪嚙合的重疊系數ε大于1,也就是當一對齒輪尚未脫開嚙合時,另一對齒輪已進入嚙合,這樣,就出現同時有兩對齒輪嚙合的瞬間,在兩對齒輪的齒向嚙合線之間形成了一個封閉容積,一部分油液也就被困在這一封閉容積中〔見圖3-5(a)〕,齒輪連續旋轉時,這一封閉容積便逐漸減小,到兩嚙合點處于節點兩側的對稱位置時,封閉容積小,齒輪再繼續轉動時,封閉容積又逐漸增大,直到容積又變大。在封閉容積減小時,被困油液受到擠壓,壓力急劇上升,使軸承上突然受到很大的沖擊載荷,使泵劇烈振動,這時高壓油從一切可能泄漏的縫隙中擠出,造成功率損失,使油液發熱等。當封閉容積增大時,由于沒有油液補充,因此形成局部真空,使原來溶解于油液中的空氣分離出來,形成了氣泡,油液中產生氣泡后,會引起噪聲、氣蝕等一系列惡果。以上情況就是齒輪泵的困油現象。這種困油現象極為嚴重地影響著泵的工作平穩性和使用壽命。
為了消除困油現象,在CB—B型齒輪泵的泵蓋上銑出兩個困油卸荷凹槽,其幾何關系卸荷槽的位置應該使困油腔由大變小時,能通過卸荷槽與壓油腔相通,而當困油腔由小變大時,能通過另一卸荷槽與吸油腔相通。兩卸荷槽之間的距離為a,必須保證在任何時候都不能使壓油腔和吸油腔互通。
按上述對稱開的卸荷槽,當困油封閉腔由大變至小時,由于油液不易從即將關閉的縫隙中擠出,故封閉油壓仍將高于壓油腔壓力;齒輪繼續轉動,當封閉腔和吸油腔相通的瞬間,高壓油又突然和吸油腔的低壓油相接觸,會引起沖擊和噪聲。于是CB—B型齒輪泵將卸荷槽的位置整個向吸油腔側平移了一個距離。這時封閉腔只有在由小變至大時才和壓油腔斷開,油壓沒有突變,封閉腔和吸油腔接通時,封閉腔不會出現真空也沒有壓力沖擊,這樣改進后,使齒輪泵的振動和噪聲得到了進一步改善。
2、 徑向不平衡力
齒輪泵工作時,在齒輪和軸承上承受徑向液壓力的作用。泵的右側為吸油腔,左側為壓油腔。在壓油腔內有液壓力作用于齒輪上,沿著齒頂的泄漏油,具有大小不等的壓力,就是齒輪和軸承受到的徑向不平衡力。液壓力越高,這個不平衡力就越大,其結果不僅加速了軸承的磨損,降低了軸承的壽命,甚至使軸變形,造成齒頂和泵體內壁的摩擦等。為了解決徑向力不平衡問題,在有些齒輪泵上,采用開壓力平衡槽的辦法來消除徑向不平衡力,但這將使泄漏增大,容積效率降低等。CB—B型齒輪泵則采用縮小壓油腔,以減少液壓力對齒頂部分的作用面積來減小徑向不平衡力,所以泵的壓油口孔徑比吸油口孔徑要小。
以上就是關于液壓齒輪泵主要包括哪些, 齒輪油泵的結構以及工作原理的介紹。